An Image Fusion Algorithm Based on Non-subsampled Shearlet Transform and Compressed Sensing

نویسندگان

  • XING Xiaoxue
  • LI Jie
  • FAN Qinyin
چکیده

In order to obtain rapid fusion speed, an image fusion algorithm based on Nonsubsampled Shearlet Transform (NSST) and Compressed Sensing (CS) is presented. The source images are decomposed with NSST. Based on local area energy, the low-frequency coefficients are fused. The high-frequency coefficients are compressed, fused and reconstructed with CS. Based on global gradient, the measurements of high-frequency coefficients are fused. The inverse NSST is used to get the final fused image. During the fusion course, only the compressed data of the high-frequency coefficients are fused, so the fusion effects can’t be affected. At the same time, the running time can be reduced. In this paper, the multi-focus images are used to verify the algorithm effectiveness. The simulation results indicate that the fusion image can be achieved without prior knowledge of the original images. Although the fusion quality is sacrificed when the sampling rate becomes higher, the algorithm can significantly reduce the time cost and hardware requirements. The algorithm provides an idea on how to satisfy the real time requirements in the fusion system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)

Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...

متن کامل

Fusion of Infrared and Visible Image Based on Compressed Sensing and Nonsubsampled Shearlet Transform

In order to solve storage and computation cost problems for the traditional whole sampling image fusion algorithms, a new method of infrared and visible light image fusion is put forward based on compressed sensing (CS) theory. Nonsubsampled shearlet transform (NSST) is introduced as the sparse transform. Compressed sensing is applied to fuse the high frequency subbands decomposed by NSST. The ...

متن کامل

Compressed Sensing Image Reconstruction Based on Discrete Shearlet Transform

The two-dimensional wavelet transform for magnetic resonance imaging (MRI) images does not sparsely represent curve singularity characteristics, which can only capture the limited direction information. Pointing at this problem, this paper presents a new method based on discrete Shearlet transform for compressed sensing MRI (CS-MRI). Frequency coefficients can be got at all scales and in all di...

متن کامل

MRI image reconstruction research based on discrete shearlet transform

The two-dimensional wavelet transform for magnetic resonance imaging (MRI) does not represent sparsely curve singularity characteristics, it can only capture the limited direction information. In order to solve this problem, a new method for compressed sensing MRI (CS-MRI) is presented based on discrete shearlet transform in this paper. Frequency coefficients can be got at all scales and in all...

متن کامل

Remote Image Fusion Based on PCA and Dual Tree Compactly Supported Shearlet Transform

This paper presents a novel remote sensing image fusion algorithm, which implements panchromatic sharpening of multispectral data through application of the principal component analysis (PCA) transform and the dual-tree compactly supported shearlet transform (DT CSST). Shearlet transforms provide near optimal representation of the anisotropic features of an image. The compactly supported shearl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016